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8.3 Positive Definite Matrices

All the eigenvalues of any symmetric matrix are real; this section is about the case in which the
eigenvalues are positive. These matrices, which arise whenever optimization (maximum and min-
imum) problems are encountered, have countless applications throughout science and engineering.
They also arise in statistics (for example, in factor analysis used in the social sciences) and in ge-
ometry (see Section ??). We will encounter them again in Chapter ?? when describing all inner
products in Rn.

Definition 8.5 Positive Definite Matrices
A square matrix is called positive definite if it is symmetric and all its eigenvalues λ are
positive, that is λ > 0.

Because these matrices are symmetric, the principal axes theorem plays a central role in the
theory.

Theorem 8.3.1
If A is positive definite, then it is invertible and det A > 0.

Proof. If A is n× n and the eigenvalues are λ1, λ2, . . . , λn, then det A = λ1λ2 · · ·λn > 0 by the
principal axes theorem (or the corollary to Theorem 8.2.5).

If x is a column in Rn and A is any real n×n matrix, we view the 1×1 matrix xT Ax as a real
number. With this convention, we have the following characterization of positive definite matrices.

Theorem 8.3.2
A symmetric matrix A is positive definite if and only if xT Ax > 0 for every column x 6= 0 in
Rn.

Proof. A is symmetric so, by the principal axes theorem, let PT AP = D = diag (λ1, λ2, . . . , λn)
where P−1 = PT and the λi are the eigenvalues of A. Given a column x in Rn, write y = PT x =[

y1 y2 . . . yn
]T . Then

xT Ax = xT (PDPT )x = yT Dy = λ1y2
1 +λ2y2

2 + · · ·+λny2
n (8.3)

If A is positive definite and x 6= 0, then xT Ax > 0 by (8.3) because some y j 6= 0 and every λi > 0.
Conversely, if xT Ax > 0 whenever x 6= 0, let x = Pe j 6= 0 where e j is column j of In. Then y = e j,
so (8.3) reads λ j = xT Ax > 0.

Note that Theorem 8.3.2 shows that the positive definite matrices are exactly the symmetric matrices
A for which the quadratic form q = xT Ax takes only positive values.
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Example 8.3.1

If U is any invertible n×n matrix, show that A =UTU is positive definite.

Solution. If x is in Rn and x 6= 0, then

xT Ax = xT (UTU)x = (Ux)T (Ux) = ‖Ux‖2 > 0

because Ux 6= 0 (U is invertible). Hence Theorem 8.3.2 applies.

It is remarkable that the converse to Example 8.3.1 is also true. In fact every positive definite
matrix A can be factored as A =UTU where U is an upper triangular matrix with positive elements
on the main diagonal. However, before verifying this, we introduce another concept that is central
to any discussion of positive definite matrices.

If A is any n×n matrix, let (r)A denote the r× r submatrix in the upper left corner of A; that
is, (r)A is the matrix obtained from A by deleting the last n− r rows and columns. The matrices
(1)A, (2)A, (3)A, . . . , (n)A = A are called the principal submatrices of A.

Example 8.3.2

If A =

 10 5 2
5 3 2
2 2 3

 then (1)A = [10], (2)A =

[
10 5
5 3

]
and (3)A = A.

Lemma 8.3.1

If A is positive definite, so is each principal submatrix (r)A for r = 1, 2, . . . , n.

Proof. Write A =

[
(r)A P

Q R

]
in block form. If y 6= 0 in Rr, write x =

[
y
0

]
in Rn.

Then x 6= 0, so the fact that A is positive definite gives

0 < xT Ax =
[

yT 0
][ (r)A P

Q R

][
y
0

]
= yT ((r)A)y

This shows that (r)A is positive definite by Theorem 8.3.2.5

If A is positive definite, Lemma 8.3.1 and Theorem 8.3.1 show that det ((r)A) > 0 for every
r. This proves part of the following theorem which contains the converse to Example 8.3.1, and
characterizes the positive definite matrices among the symmetric ones.

5A similar argument shows that, if B is any matrix obtained from a positive definite matrix A by deleting certain
rows and deleting the same columns, then B is also positive definite.
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Theorem 8.3.3
The following conditions are equivalent for a symmetric n×n matrix A:

1. A is positive definite.

2. det ((r)A)> 0 for each r = 1, 2, . . . , n.

3. A =UTU where U is an upper triangular matrix with positive entries on the main
diagonal.

Furthermore, the factorization in (3) is unique (called the Cholesky factorization6of A).

Proof. First, (3) ⇒ (1) by Example 8.3.1, and (1) ⇒ (2) by Lemma 8.3.1 and Theorem 8.3.1.
(2) ⇒ (3). Assume (2) and proceed by induction on n. If n = 1, then A = [a] where a > 0 by (2),

so take U = [
√

a]. If n > 1, write B =(n−1) A. Then B is symmetric and satisfies (2) so, by induction,
we have B = UTU as in (3) where U is of size (n− 1)× (n− 1). Then, as A is symmetric, it has

block form A =

[
B p

pT b

]
where p is a column in Rn−1 and b is in R. If we write x = (UT )−1p and

c = b−xT x, block multiplication gives

A =

[
UTU p
pT b

]
=

[
UT 0
xT 1

][
U x
0 c

]
as the reader can verify. Taking determinants and applying Theorem 3.1.5 gives det A= det (UT ) det U ·
c = c(det U)2. Hence c > 0 because det A > 0 by (2), so the above factorization can be written

A =

[
UT 0
xT √

c

][
U x
0

√
c

]
Since U has positive diagonal entries, this proves (3).

As to the uniqueness, suppose that A=UTU =UT
1 U1 are two Cholesky factorizations. Now write

D = UU−1
1 = (UT )−1UT

1 . Then D is upper triangular, because D = UU−1
1 , and lower triangular,

because D = (UT )−1UT
1 , and so it is a diagonal matrix. Thus U = DU1 and U1 = DU , so it suffices

to show that D = I. But eliminating U1 gives U = D2U , so D2 = I because U is invertible. Since the
diagonal entries of D are positive (this is true of U and U1), it follows that D = I.

The remarkable thing is that the matrix U in the Cholesky factorization is easy to obtain from
A using row operations. The key is that Step 1 of the following algorithm is possible for any positive
definite matrix A. A proof of the algorithm is given following Example 8.3.3.

Algorithm for the Cholesky Factorization

If A is a positive definite matrix, the Cholesky factorization A =UTU can be obtained as
follows:

Step 1. Carry A to an upper triangular matrix U1 with positive diagonal entries using row

6Andre-Louis Cholesky (1875–1918), was a French mathematician who died in World War I. His factorization was
published in 1924 by a fellow officer.
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operations each of which adds a multiple of a row to a lower row.

Step 2. Obtain U from U1 by dividing each row of U1 by the square root of the diagonal
entry in that row.

Example 8.3.3

Find the Cholesky factorization of A =

 10 5 2
5 3 2
2 2 3

.

Solution. The matrix A is positive definite by Theorem 8.3.3 because det (1)A = 10 > 0,
det (2)A = 5 > 0, and det (3)A = det A = 3 > 0. Hence Step 1 of the algorithm is carried out
as follows:

A =

 10 5 2
5 3 2
2 2 3

→

 10 5 2
0 1

2 1
0 1 13

5

→

 10 5 2
0 1

2 1
0 0 3

5

=U1

Now carry out Step 2 on U1 to obtain U =


√

10 5√
10

2√
10

0 1√
2

√
2

0 0
√

3√
5

.

The reader can verify that UTU = A.

Proof of the Cholesky Algorithm. If A is positive definite, let A =UTU be the Cholesky factor-
ization, and let D = diag (d1, . . . , dn) be the common diagonal of U and UT . Then UT D−1 is lower
triangular with ones on the diagonal (call such matrices LT-1). Hence L = (UT D−1)−1 is also LT-1,
and so In → L by a sequence of row operations each of which adds a multiple of a row to a lower row
(verify; modify columns right to left). But then A → LA by the same sequence of row operations
(see the discussion preceding Theorem 2.5.1). Since LA = [D(UT )−1][UTU ] = DU is upper triangular
with positive entries on the diagonal, this shows that Step 1 of the algorithm is possible.

Turning to Step 2, let A → U1 as in Step 1 so that U1 = L1A where L1 is LT-1. Since A is
symmetric, we get

L1UT
1 = L1(L1A)T = L1AT LT

1 = L1ALT
1 =U1LT

1 (8.4)

Let D1 = diag (e1, . . . , en) denote the diagonal of U1. Then (8.4) gives L1(UT
1 D−1

1 ) = U1LT
1 D−1

1 .
This is both upper triangular (right side) and LT-1 (left side), and so must equal In. In particular,
UT

1 D−1
1 = L−1

1 . Now let D2 = diag (
√

e1, . . . ,
√

en), so that D2
2 = D1. If we write U = D−1

2 U1 we have

UTU = (UT
1 D−1

2 )(D−1
2 U1) =UT

1 (D2
2)

−1U1 = (UT
1 D−1

1 )U1 = (L−1
1 )U1 = A

This proves Step 2 because U = D−1
2 U1 is formed by dividing each row of U1 by the square root of

its diagonal entry (verify).
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Exercises for 8.3

Exercise 8.3.1 Find the Cholesky decomposition
of each of the following matrices.[

4 3
3 5

]
a)

[
2 −1

−1 1

]
b) 12 4 3

4 2 −1
3 −1 7

c)

 20 4 5
4 2 3
5 3 5

d)

b. U =
√

2
2

[
2 −1
0 1

]

d. U = 1
30

 60
√

5 12
√

5 15
√

5
0 6

√
30 10

√
30

0 0 5
√

15


Exercise 8.3.2

a. If A is positive definite, show that Ak is posi-
tive definite for all k ≥ 1.

b. Prove the converse to (a) when k is odd.

c. Find a symmetric matrix A such that A2 is
positive definite but A is not.

b. If λ k > 0, k odd, then λ > 0.

Exercise 8.3.3 Let A =

[
1 a
a b

]
. If a2 < b, show

that A is positive definite and find the Cholesky fac-
torization.

Exercise 8.3.4 If A and B are positive definite and
r > 0, show that A+B and rA are both positive def-
inite.
If x 6= 0, then xT Ax> 0 and xT Bx> 0. Hence xT (A+
B)x = xT Ax+xT Bx > 0 and xT (rA)x = r(xT Ax)> 0,
as r > 0.

Exercise 8.3.5 If A and B are positive definite,

show that
[

A 0
0 B

]
is positive definite.

Exercise 8.3.6 If A is an n×n positive definite ma-
trix and U is an n×m matrix of rank m, show that
UT AU is positive definite.
Let x 6= 0 in Rn. Then xT (UT AU)x = (Ux)T A(Ux)>
0 provided Ux 6= 0. But if U =

[
c1 c2 . . . cn

]
and x= (x1, x2, . . . , xn), then Ux= x1c1+x2c2+ · · ·+
xncn 6= 0 because x 6= 0 and the ci are independent.

Exercise 8.3.7 If A is positive definite, show that
each diagonal entry is positive.

Exercise 8.3.8 Let A0 be formed from A by delet-
ing rows 2 and 4 and deleting columns 2 and 4. If A
is positive definite, show that A0 is positive definite.

Exercise 8.3.9 If A is positive definite, show that
A =CCT where C has orthogonal columns.

Exercise 8.3.10 If A is positive definite,
show that A = C2 where C is positive definite.

Let PT AP = D = diag (λ1, . . . , λn) where PT = P.
Since A is positive definite, each eigenvalue λi > 0.
If B = diag (

√
λ1, . . . ,

√
λn) then B2 = D, so A =

PB2PT = (PBPT )2. Take C = PBPT . Since C has
eigenvalues

√
λi > 0, it is positive definite.

Exercise 8.3.11 Let A be a positive definite ma-
trix. If a is a real number, show that aA is positive
definite if and only if a > 0.

Exercise 8.3.12

a. Suppose an invertible matrix A can be factored
in Mnn as A= LDU where L is lower triangular
with 1s on the diagonal, U is upper triangular
with 1s on the diagonal, and D is diagonal with
positive diagonal entries. Show that the fac-
torization is unique: If A = L1D1U1 is another
such factorization, show that L1 = L, D1 = D,
and U1 =U .

b. Show that a matrix A is positive definite if and
only if A is symmetric and admits a factoriza-
tion A = LDU as in (a).
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b. If A is positive definite, use Theorem 8.3.1
to write A = UTU where U is upper trian-
gular with positive diagonal D. Then A =
(D−1U)T D2(D−1U) so A = L1D1U1 is such a
factorization if U1 = D−1U , D1 = D2, and L1 =
UT

1 . Conversely, let AT = A = LDU be such a
factorization. Then UT DT LT =AT =A= LDU ,
so L = UT by (a). Hence A = LDLT = V TV
where V = LD0 and D0 is diagonal with D2

0 =D
(the matrix D0 exists because D has positive
diagonal entries). Hence A is symmetric, and

it is positive definite by Example 8.3.1.

Exercise 8.3.13 Let A be positive definite and
write dr = det (r)A for each r = 1, 2, . . . , n. If U
is the upper triangular matrix obtained in step 1
of the algorithm, show that the diagonal elements
u11, u22, . . . , unn of U are given by u11 = d1, u j j =
d j/d j−1 if j > 1. [Hint: If LA = U where L is lower
triangular with 1s on the diagonal, use block mul-
tiplication to show that det (r)A = det (r)U for each
r.]
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